DocumentCode :
3422101
Title :
Nonlinear regression using smooth Bayesian estimation
Author :
Halimi, Abderrahim ; Mailhes, Corinne ; Tourneret, Jean-Yves
Author_Institution :
Univ. of Toulouse, Toulouse, France
fYear :
2015
fDate :
19-24 April 2015
Firstpage :
2634
Lastpage :
2638
Abstract :
This paper proposes a new Bayesian strategy for the estimation of smooth parameters from nonlinear models. The observed signal is assumed to be corrupted by an independent and non identically (colored) Gaussian distribution. A prior enforcing a smooth temporal evolution of the model parameters is considered. The joint posterior distribution of the unknown parameter vector is then derived. A Gibbs sampler coupled with a Hamiltonian Monte Carlo algorithm is proposed which allows samples distributed according to the posterior of interest to be generated and to estimate the unknown model parameters/hyperparameters. Simulations conducted with synthetic and real satellite altimetric data show the potential of the proposed Bayesian model and the corresponding estimation algorithm for nonlinear regression with smooth estimated parameters.
Keywords :
Gaussian distribution; Markov processes; Monte Carlo methods; maximum likelihood estimation; regression analysis; signal processing; smoothing methods; Gaussian distribution; Gibbs sampler; Hamiltonian Monte Carlo algorithm; joint posterior distribution; nonlinear models; nonlinear regression; satellite altimetric data; smooth Bayesian estimation; smooth parameter estimation; smooth temporal evolution; Altimetry; Bayes methods; Estimation; Joints; Monte Carlo methods; Noise; Remote sensing; Bayesian algorithm; Hamiltonian Monte-Carlo; MCMC; Parameter estimation; Radar altimetry;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on
Conference_Location :
South Brisbane, QLD
Type :
conf
DOI :
10.1109/ICASSP.2015.7178448
Filename :
7178448
Link To Document :
بازگشت