DocumentCode :
342456
Title :
Floating gate analog memory for parameter and variable storage in a learning silicon neuron
Author :
Häfliger, P. ; Rasche, C.
Author_Institution :
Inst. of Neuroinf., Eidgenossische Tech. Hochschule, Zurich, Switzerland
Volume :
2
fYear :
1999
fDate :
36342
Firstpage :
416
Abstract :
Retention of parameters and learnt synaptic weights is a central problem in the construction of neural networks. We have applied analog floating gate technology to solve these problems in the context of biologically realistic `silicon neurons´. Parameters are stored on a novel floating gate array, and synaptic weights are retained by a floating gate learning synapse, that performs on-chip learning. The latter can emulate a form of long term potentiation (LTP) and long term depression (LTD) as observed in biological neurons
Keywords :
MOS analogue integrated circuits; VLSI; analogue storage; elemental semiconductors; learning (artificial intelligence); neural chips; silicon; Si; analog floating gate technology; biologically realistic silicon neurons; floating gate analog memory; learnt synaptic weights; long term depression; long term potentiation; on-chip learning; parameter storage; variable storage; Analog memory; CMOS technology; Circuits; Intelligent networks; Neurons; Nonvolatile memory; Pins; Silicon; Tunneling; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on
Conference_Location :
Orlando, FL
Print_ISBN :
0-7803-5471-0
Type :
conf
DOI :
10.1109/ISCAS.1999.780749
Filename :
780749
Link To Document :
بازگشت