• DocumentCode
    3425477
  • Title

    Iterative constrained penalized likelihood estimation of parameters for CDMA

  • Author

    Khan, E. ; Slock, D.

  • Author_Institution
    Dept. of Mobile Commun., Inst. Eurecom, Sophia-Antipolis, France
  • Volume
    2
  • fYear
    2002
  • fDate
    3-6 Nov. 2002
  • Firstpage
    1468
  • Abstract
    We describe an iterative method for maximum likelihood (ML) parameter estimation corrupted by additive white Gaussian noise. In the objective function we subtract/add the Kullback-Leibler (KL) distance function or Euclidean distance function to keep the old parameter set close to the new ones and it can be considered as a penalty term. The above augmented cost function can be maximized/minimized over the constraint that the detected data vector lie on the sphere. We simplify this constraint function by using first order Taylor expansion at the old parameter value. The useful behavior of the proposed algorithm is verified by numerical experiments.
  • Keywords
    AWGN channels; code division multiple access; constraint theory; iterative methods; maximum likelihood estimation; minimax techniques; mobile radio; series (mathematics); CDMA; Euclidean distance function; Kullback-Leibler distance function; ML parameter estimation; additive white Gaussian noise; augmented cost function; constrained penalized likelihood estimation; first order Taylor expansion; iterative method; maximization; maximum likelihood parameter estimation; minimization; penalty term; AWGN; Costs; Euclidean distance; Gaussian noise; Iterative methods; Least squares approximation; Maximum likelihood estimation; Mobile communication; Multiaccess communication; Parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference on
  • Conference_Location
    Pacific Grove, CA, USA
  • ISSN
    1058-6393
  • Print_ISBN
    0-7803-7576-9
  • Type

    conf

  • DOI
    10.1109/ACSSC.2002.1197023
  • Filename
    1197023