DocumentCode :
3426316
Title :
Active MAP Inference in CRFs for Efficient Semantic Segmentation
Author :
Roig, Gemma ; Boix, Xavier ; de Nijs, Roderick ; Ramos, Sergio ; Kuhnlenz, Kolja ; Van Gool, Luc
Author_Institution :
ETH Zurich, Zurich, Switzerland
fYear :
2013
fDate :
1-8 Dec. 2013
Firstpage :
2312
Lastpage :
2319
Abstract :
Most MAP inference algorithms for CRFs optimize an energy function knowing all the potentials. In this paper, we focus on CRFs where the computational cost of instantiating the potentials is orders of magnitude higher than MAP inference. This is often the case in semantic image segmentation, where most potentials are instantiated by slow classifiers fed with costly features. We introduce Active MAP inference 1) to on-the-fly select a subset of potentials to be instantiated in the energy function, leaving the rest of the parameters of the potentials unknown, and 2) to estimate the MAP labeling from such incomplete energy function. Results for semantic segmentation benchmarks, namely PASCAL VOC 2010 and MSRC-21, show that Active MAP inference achieves similar levels of accuracy but with major efficiency gains.
Keywords :
image segmentation; inference mechanisms; CRF; MAP labeling estimation; MSRC-21 benchmarks; PASCAL VOC 2010 benchmarks; active MAP inference; computational cost; conditional random fields; energy function; semantic image segmentation; Computational modeling; Image segmentation; Inference algorithms; Labeling; Random variables; Semantics; Silicon;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2013 IEEE International Conference on
Conference_Location :
Sydney, VIC
ISSN :
1550-5499
Type :
conf
DOI :
10.1109/ICCV.2013.287
Filename :
6751398
Link To Document :
بازگشت