DocumentCode :
3426697
Title :
Robust least-squares estimators based on semidefinite programming
Author :
Dahl, Joachim ; Vandenberghe, Lieven ; Fleury, Bernad H.
Author_Institution :
Center for PersonKommunikation, Aalborg Univ., Denmark
Volume :
2
fYear :
2002
fDate :
3-6 Nov. 2002
Firstpage :
1787
Abstract :
We apply recently developed semidefinite programming (SDP) techniques to robust estimation and equalization problems in communication systems with uncertain channels. We derive robust versions of three widely used estimators: the zero-forcing estimator (ZFE), the minimum-mean squared error estimator (MMSEE), and the minimum-mean squared error decision feedback estimator (MMSE-DFE). The formulation of the robust estimation problem takes into account structure in the uncertainty, modeled as an ellipsoidal family of possible FIR channels. The robust estimators are found as the global minimizers of the worst-case residual, and can be computed at a moderate computational cost via semidefinite programming.
Keywords :
Toeplitz matrices; channel estimation; decision feedback equalisers; least mean squares methods; minimisation; FIR channels; MMSE-DFE; Toeplitz matrix; channel equalization; channel estimation; communication channels; decision feedback equalizer; decision feedback estimator; global minimizers; least-squares estimators; minimum-mean squared error estimator; semidefinite programming; zero-forcing estimator; Additive white noise; Channel estimation; Computational efficiency; Decision feedback equalizers; Delay estimation; Finite impulse response filter; Robustness; Signal processing; Transversal filters; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-7803-7576-9
Type :
conf
DOI :
10.1109/ACSSC.2002.1197082
Filename :
1197082
Link To Document :
بازگشت