DocumentCode :
3428279
Title :
Mixture clustering using multidimensional histograms for skin detection
Author :
Fu, Zhouyu ; Yang, Jinfeng ; Hu, Weiming ; Tan, Tieniu
Author_Institution :
Inst. of Autom., Chinese Acad. of Sci., Beijing, China
Volume :
4
fYear :
2004
fDate :
23-26 Aug. 2004
Firstpage :
549
Abstract :
Mixture models are frequently used to fit skin color distributions in various color spaces. However, the high computational cost of the conventional EM algorithm makes it intractable for large data sets. We propose a novel algorithm for estimating the parameters of mixture models. Multidimensional histograms are incorporated into the EM framework to group neighboring datapoints and reduce the size of the data set. We adopt this method to build Gaussian mixture models of skin color and compare the performance of models with different number of components. Further experiments on synthetic data show the efficiency of our method as a general approach to data clustering.
Keywords :
Gaussian processes; image colour analysis; parameter estimation; skin; Gaussian mixture model; color space; data clustering; mixture clustering; multidimensional histogram; skin color distribution; skin detection; Clustering algorithms; Databases; Density functional theory; Face detection; Histograms; Iterative algorithms; Multidimensional systems; Parameter estimation; Pattern recognition; Skin;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-2128-2
Type :
conf
DOI :
10.1109/ICPR.2004.1333831
Filename :
1333831
Link To Document :
بازگشت