DocumentCode :
3428622
Title :
A Practical Transfer Learning Algorithm for Face Verification
Author :
Xudong Cao ; Wipf, David ; Fang Wen ; Genquan Duan ; Jian Sun
fYear :
2013
fDate :
1-8 Dec. 2013
Firstpage :
3208
Lastpage :
3215
Abstract :
Face verification involves determining whether a pair of facial images belongs to the same or different subjects. This problem can prove to be quite challenging in many important applications where labeled training data is scarce, e.g., family album photo organization software. Herein we propose a principled transfer learning approach for merging plentiful source-domain data with limited samples from some target domain of interest to create a classifier that ideally performs nearly as well as if rich target-domain data were present. Based upon a surprisingly simple generative Bayesian model, our approach combines a KL-divergence based regularizer/prior with a robust likelihood function leading to a scalable implementation via the EM algorithm. As justification for our design choices, we later use principles from convex analysis to recast our algorithm as an equivalent structured rank minimization problem leading to a number of interesting insights related to solution structure and feature-transform invariance. These insights help to both explain the effectiveness of our algorithm as well as elucidate a wide variety of related Bayesian approaches. Experimental testing with challenging datasets validate the utility of the proposed algorithm.
Keywords :
Bayes methods; convex programming; expectation-maximisation algorithm; face recognition; image classification; learning (artificial intelligence); minimisation; EM algorithm; KL-divergence-based regularizer-prior; Kullback-Leibler divergence-prior; convex analysis; equivalent structured rank minimization problem; face verification; facial images; family album photo organization software; feature-transform invariance; generative Bayesian model; labeled training data; principled transfer learning approach; robust likelihood function; source-domain data; target-domain data; Algorithm design and analysis; Bayes methods; Computational modeling; Face; Joints; Testing; Vectors; face verification; transfer learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2013 IEEE International Conference on
Conference_Location :
Sydney, NSW
ISSN :
1550-5499
Type :
conf
DOI :
10.1109/ICCV.2013.398
Filename :
6751510
Link To Document :
بازگشت