DocumentCode :
342884
Title :
Stochastic reverse hill climbing and iterated local search
Author :
Cotta, Carlos ; Alba, Enrique ; Troya, José M.
Author_Institution :
Dept. Lenguajes y Ciencias de la Comput., Malaga Univ., Spain
Volume :
2
fYear :
1999
fDate :
1999
Abstract :
This paper analyzes the detection of stagnation states in iterated local search algorithms. This is done considering elements such as the population size, the length of the encoding and the number of observed non-improving iterations. This analysis isolates the features of the target problem within one parameter for which three different estimations are given: two static a priori estimations and a dynamic approach. In the latter case, a stochastic reverse hill climbing algorithm is used to extract information from the fitness landscape. The applicability of these estimations is studied and exemplified on different problems
Keywords :
evolutionary computation; parameter estimation; search problems; stochastic processes; dynamic approach; encoding length; fitness landscape; iterated local search algorithms; nonimproving iterations; population size; stagnation state detection; static a priori estimations; stochastic reverse hill climbing; Algorithm design and analysis; Data mining; Encoding; Erbium; Genetic mutations; Parameter estimation; Probability; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-5536-9
Type :
conf
DOI :
10.1109/CEC.1999.782669
Filename :
782669
Link To Document :
بازگشت