• DocumentCode
    3429326
  • Title

    Web Site Auditing Using Web Access Log Data

  • Author

    He, Si ; Balecel, Nabil ; Hamam, Habib ; Bouslimani, Yassine

  • Author_Institution
    Electr. Eng. Dept., Univ. de Moncton Moncton, Moncton, NB
  • fYear
    2009
  • fDate
    11-13 May 2009
  • Firstpage
    94
  • Lastpage
    101
  • Abstract
    This paper applies a method to use the access log data to audit Web sites. It studies website auditing by (1) proposing a new fuzzy clustering algorithm that combines standard fuzzy C-means and the artificial fish swarm algorithm; (2) presenting a new measurement index for similarities between user sessions; and (3) providing an experiment on the execution of this new method. The results are encouraging and show the potential of our fuzzy clustering approach to assist in auditing Web site.
  • Keywords
    Web sites; artificial intelligence; auditing; information retrieval; optimisation; pattern clustering; Web access log data; Web site auditing; artificial fish swarm algorithm; fuzzy clustering algorithm; standard fuzzy C-means; Clustering algorithms; Communication networks; Companies; Councils; Data analysis; Helium; Information technology; Marine animals; Measurement standards; Web sites; Artificial Fish Swarm Algorithm; Fuzzy Clustering; Web Access Log; Web site auditing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Communication Networks and Services Research Conference, 2009. CNSR '09. Seventh Annual
  • Conference_Location
    Moncton, NB
  • Print_ISBN
    978-1-4244-4155-6
  • Electronic_ISBN
    978-0-7695-3649-1
  • Type

    conf

  • DOI
    10.1109/CNSR.2009.24
  • Filename
    4939112