DocumentCode :
343069
Title :
Using fault detection methods to optimize parameters in human-machine interface devices
Author :
Repperger, D.W. ; Haas, M.W. ; Koivo, A.J.
Author_Institution :
Res. Lab., Wright-Patterson AFB, OH, USA
Volume :
2
fYear :
1999
fDate :
2-4 Jun 1999
Firstpage :
1346
Abstract :
Using methods from fault diagnosis studies and signal detection theory, an optimal model involving decision making of the human operator is formulated. Parameters are estimated based on a likelihood function methodology to characterize how human responses are elicited. The theoretical model is empirically validated with human subjects and it enables one to estimate certain properties of the human-machine interface (risk adversity)
Keywords :
Bayes methods; behavioural sciences; fault diagnosis; man-machine systems; parameter estimation; probability; signal detection; decision making; fault detection methods; human operator; human responses; human-machine interface devices; likelihood function methodology; optimal model; risk adversity; signal detection theory; Decision making; Discrete wavelet transforms; Electrical fault detection; Fault detection; Fault diagnosis; Humans; Man machine systems; Optimization methods; Parameter estimation; Signal detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1999. Proceedings of the 1999
Conference_Location :
San Diego, CA
ISSN :
0743-1619
Print_ISBN :
0-7803-4990-3
Type :
conf
DOI :
10.1109/ACC.1999.783587
Filename :
783587
Link To Document :
بازگشت