DocumentCode :
3430923
Title :
L1 gain analysis of linear positive systems and its application
Author :
Ebihara, Yoshio ; Peaucelle, Dimitri ; Arzelier, Denis
Author_Institution :
Department of Electrical Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, 615-8510, Japan
fYear :
2011
fDate :
12-15 Dec. 2011
Firstpage :
4029
Lastpage :
4034
Abstract :
In this paper, we focus on L1 gain analysis problems of linear time-invariant continuous-time positive systems. A positive system is characterized by the strong property that its output is always nonnegative for any nonnegative input. Because of this peculiar property, it is natural to evaluate the magnitude of positive systems by the L1 gain (i.e. the L1 induced norm) in terms of the input and output signals. In contrast with the standard L1 gain, in this paper, we are interested in L1 gains with weightings on the input and output signals. It turns out that the L1 gain with weightings plays an essential role in the stability analysis of interconnected positive systems. More precisely, as a main result of this paper, we show that an interconnected positive system is stable if and only if there exists a set of weighting vectors that renders the L1 gain of each positive subsystem less than unity. As such, using a terminology in the literature, the weighting vectors work as ´separators,´ and thus we establish solid separator-based conditions for the stability of interconnected positive systems. We finally illustrate that these separator-based conditions are effective particularly when we deal with robust stability analysis of positive systems against both L1 gain bounded and parametric uncertainties.
Keywords :
Interconnected systems; Manganese; Particle separators; Robust stability; Stability analysis; Uncertainty; Vectors; L1 gain; interconnection; positive system; separator; stability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on
Conference_Location :
Orlando, FL, USA
ISSN :
0743-1546
Print_ISBN :
978-1-61284-800-6
Electronic_ISBN :
0743-1546
Type :
conf
DOI :
10.1109/CDC.2011.6160692
Filename :
6160692
Link To Document :
بازگشت