DocumentCode :
3430998
Title :
Improved adaptive Gaussian mixture model for background subtraction
Author :
Zivkovic, Zoran
Author_Institution :
Intelligent & Autonomous Syst. Group, Amsterdam Univ., Netherlands
Volume :
2
fYear :
2004
fDate :
23-26 Aug. 2004
Firstpage :
28
Abstract :
Background subtraction is a common computer vision task. We analyze the usual pixel-level approach. We develop an efficient adaptive algorithm using Gaussian mixture probability density. Recursive equations are used to constantly update the parameters and but also to simultaneously select the appropriate number of components for each pixel.
Keywords :
Gaussian processes; computer vision; recursive functions; adaptive Gaussian mixture model; background subtraction; computer vision; pixel-level approach; probability density; recursive equations; Adaptive algorithm; Cameras; Computer vision; Density functional theory; Equations; Intelligent systems; Layout; Object detection; Pixel; Surveillance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-2128-2
Type :
conf
DOI :
10.1109/ICPR.2004.1333992
Filename :
1333992
Link To Document :
بازگشت