DocumentCode :
343331
Title :
Adaptive control of two-link manipulator via dynamic neural network
Author :
Yu, Wen ; Poznyak, Alexander S. ; Sanchez, Edgar N.
Author_Institution :
Seccion de Control Autom., CINVESTAV-IPN, Mexico City, Mexico
Volume :
4
fYear :
1999
fDate :
1999
Firstpage :
2516
Abstract :
A neurocontrol method for robot manipulators is presented. A single-layer dynamic neural network is used to estimate the unknown manipulators, then a direct linearization controller is derived based on the neuro identifier. Because the approximation capability is limited, another PD-like controller is applied to compensate the unmodeled dynamics. The main contribution of the paper is that the boundness of the identification error and tracking error are established
Keywords :
Riccati equations; adaptive control; identification; manipulator dynamics; matrix algebra; neurocontrollers; two-term control; PD-like controller; approximation capability; boundness; direct linearization controller; dynamic neural network; identification error; neuro identifier; neurocontrol method; robot manipulators; single-layer network; tracking error; two-link manipulator; unmodeled dynamics; Adaptive control; Manipulator dynamics; Neural networks; Optimal control; Robots; Robust control; Robust stability; Sliding mode control; Symmetric matrices; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1999. Proceedings of the 1999
Conference_Location :
San Diego, CA
ISSN :
0743-1619
Print_ISBN :
0-7803-4990-3
Type :
conf
DOI :
10.1109/ACC.1999.786507
Filename :
786507
Link To Document :
بازگشت