DocumentCode :
3434222
Title :
Web image co-clustering based on tag and image content fusion
Author :
Chen, Jie ; Tan, Jianlong ; Yin, Xiangzhou ; Liao, Hao
Author_Institution :
Beijing Univ. of Posts & Telecommun., Beijing, China
fYear :
2010
fDate :
24-26 Sept. 2010
Firstpage :
378
Lastpage :
382
Abstract :
In Web 2.0 applications, users always label digital images using textual descriptions, which are also called tags. As a result, a web image usually carries both tag and visual content information. In order to improve the retrieval performance of web images, in this paper, we propose an error-driven fusion co-clustering algorithm, which combines images´ tags, visual contents together for analysis. Experimental results demonstrate that our algorithm outperforms other simple clustering methods.
Keywords :
Internet; content-based retrieval; image fusion; pattern clustering; Web 2.0; Web image co-clustering; error-driven fusion co-clustering algorithm; image content fusion; images´ tags; retrieval performance; textual descriptions; visual content information; Bipartite graph; Clustering algorithms; Clustering methods; Feature extraction; Partitioning algorithms; Semantics; Visualization; co-clustering; error-driven fusion; image retrieval;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Network Infrastructure and Digital Content, 2010 2nd IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-6851-5
Type :
conf
DOI :
10.1109/ICNIDC.2010.5657793
Filename :
5657793
Link To Document :
بازگشت