DocumentCode :
3445443
Title :
Time-optimal obstacle avoidance
Author :
Sundar, S. ; Shiller, Z.
Author_Institution :
Dept. of Mech. Aerosp. & Nucl. Eng., California Univ., Los Angeles, CA, USA
Volume :
3
fYear :
1995
fDate :
21-27 May 1995
Firstpage :
3075
Abstract :
This paper presents a method for generating near-time optimal trajectories in cluttered environments for manipulators with invariant inertia matrices. For one obstacle, the method generates the time-optimal trajectory by minimizing the time-derivative of the return (cost) function for this problem, satisfying the Hamilton-Jacobi-Bellman (HJB) equation. For multiple obstacles, the trajectory is generated using the pseudo return function, which is an approximation of the return function for the multi-obstacle problem. The pseudo return function avoids one obstacle at a time, producing near-optimal trajectories that are guaranteed to avoid the obstacles and satisfy the actuator constraints. An example with circular obstacles demonstrates close correlation between the near-optimal and optimal paths, requiring computational efforts that are suitable for on-line implementations
Keywords :
feedback; manipulator dynamics; manipulator kinematics; minimisation; path planning; time optimal control; Hamilton-Jacobi-Bellman equation; actuator constraints; circular obstacles; cluttered environments; invariant inertia matrices; manipulators; multiple obstacles; near-time optimal trajectories; optimal paths; pseudo return function; time-optimal obstacle avoidance; Actuators; Aerodynamics; Couplings; Equations; Jacobian matrices; Manipulator dynamics; Nonlinear dynamical systems; Nuclear power generation; Optimal control; Robots;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on
Conference_Location :
Nagoya
ISSN :
1050-4729
Print_ISBN :
0-7803-1965-6
Type :
conf
DOI :
10.1109/ROBOT.1995.525722
Filename :
525722
Link To Document :
بازگشت