Title :
Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields
Author :
Kleinberg, Jon ; Tardos, Éva
Author_Institution :
Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA
Abstract :
In a traditional classification problem, we wish to assign one of k labels (or classes) to each of n objects, in a way that is consistent with some observed data that we have about the problem. An active line of research in this area is concerned with classification when one has information about pairwise relationships among the objects to be classified; this issue is one of the principal motivations for the framework of Markov random fields, and it arises in areas such as image processing, biometry: and document analysis. In its most basic form, this style of analysis seeks a classification that optimizes a combinatorial function consisting of assignment costs-based on the individual choice of label we make for each object-and separation costs-based on the pair of choices we make for two “related” objects. We formulate a general classification problem of this type, the metric labeling problem; we show that it contains as special cases a number of standard classification frameworks, including several arising from the theory of Markov random fields. From the perspective of combinatorial optimization, our problem can be viewed as a substantial generalization of the multiway cut problem, and equivalent to a type of uncapacitated quadratic assignment problem. We provide the first non-trivial polynomial-time approximation algorithms for a general family of classification problems of this type. Our main result is an O(log k log log k)-approximation algorithm for the metric labeling problem, with respect to an arbitrary metric on a set of k labels, and an arbitrary weighted graph of relationships on a set of objects. For the special case in which the labels are endowed with the uniform metric-all distances are the same-our methods provide a 2-approximation
Keywords :
Markov processes; pattern classification; Markov random fields; classification problem; combinatorial optimization; metric labeling; multiway cut problem; pairwise relationships; uncapacitated quadratic assignment problem; Approximation algorithms; Classification algorithms; Computer science; Cost function; Electrical capacitance tomography; Image analysis; Image processing; Labeling; Markov random fields; Read only memory;
Conference_Titel :
Foundations of Computer Science, 1999. 40th Annual Symposium on
Conference_Location :
New York City, NY
Print_ISBN :
0-7695-0409-4
DOI :
10.1109/SFFCS.1999.814572