• DocumentCode
    3463484
  • Title

    Online identification of nonlinear system in the Reproducing Kernel Hilbert Space using SVDKPCA method

  • Author

    Taouali, Okba ; Elaissi, Ilyes ; Messaoud, Hassani

  • Author_Institution
    Res. Unit ATSI, Nat. Eng. Sch. of Monastir, Monastir, Tunisia
  • fYear
    2011
  • fDate
    3-5 March 2011
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD-KPCA method uses the SVD technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.
  • Keywords
    Hilbert spaces; identification; nonlinear systems; principal component analysis; singular value decomposition; SVD-KPCA method; online nonlinear system identification; reduced kernel principal component analysis; reproducing kernel Hilbert space; Chemical reactors; Data models; Eigenvalues and eigenfunctions; Hilbert space; Kernel; Least squares approximation; Principal component analysis; Online SVD-KPCA; RKHS; RKPCA; SLT;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Communications, Computing and Control Applications (CCCA), 2011 International Conference on
  • Conference_Location
    Hammamet
  • Print_ISBN
    978-1-4244-9795-9
  • Type

    conf

  • DOI
    10.1109/CCCA.2011.6031191
  • Filename
    6031191