DocumentCode :
3468695
Title :
Multipole matrix elements
Author :
Slavyanov, S.Yu.
Author_Institution :
Inst. of Phys., St. Petersburg Univ., Russia
fYear :
1999
fDate :
1999
Firstpage :
189
Lastpage :
195
Abstract :
Considers an eigenfunction and an eigenvalue of a spectral problem on the whole axis for a 1D Schrodinger equation. Our goal would be to obtain recursive relations for matrix elements with a different number k and fixed n and m. Calculations are given using auxiliary differential equations and an integral transform. For an anharmonic oscillator, the basic equation is a specialization of the triconfluent Heun equation
Keywords :
Schrodinger equation; differential equations; eigenvalues and eigenfunctions; harmonic oscillators; matrix algebra; transforms; 1D Schrodinger equation; anharmonic oscillator; auxiliary differential equations; eigenfunction; eigenvalue; integral transform; multipole matrix elements; recursive relations; spectral problem; triconfluent Heun equation; whole axis; Differential equations; Diffraction; Eigenvalues and eigenfunctions; Physics; Polynomials; Schrodinger equation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Day on Diffraction, 1999. Proceedings. International Seminar
Conference_Location :
St. Petersburg
Print_ISBN :
5-7997-0156-9
Type :
conf
DOI :
10.1109/DD.1999.816200
Filename :
816200
Link To Document :
بازگشت