Title :
Active lighting learning for 3D model based vehicle tracking
Author :
Hou, Tingbo ; Wang, Sen ; Qin, Hong
Author_Institution :
Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA
Abstract :
Varying illumination is a challenging issue in many computer vision problems (e.g., tagging, matching, and tracking), while in inverse rendering, people are interested in estimating illumination from rendered images or videos. Can these two techniques be combined together to form a unified framework for vehicle tracking and lighting learning? This paper gives probably the first thought in this joint problem, by presenting a framework to adaptively learn lighting from an image sequence while tracking the object (specifically, the vehicle) in it. We formulate the illumination model with both diffusion and specularity components using a frequency-space representation, and design a nonlinear model to estimate lighting coefficients in a low-dimensional subspace. The lighting learning and vehicle tracking are integrated in a unified Markov network, which can be solved by an iterative believe propagation (BP) method. The proposed framework can track a vehicle moving in a video, as well as transfer the learned lighting to other objects, which shows its potential in augmented reality.
Keywords :
Markov processes; backpropagation; computer vision; image matching; image sequences; iterative methods; rendering (computer graphics); traffic engineering computing; vehicles; 3D model based vehicle tracking; active lighting learning; computer vision problems; frequency space representation; image rendering; image sequence; inverse rendering; iterative believe propagation; nonlinear model; video rendering; Computer vision; Frequency estimation; Image sequences; Iterative methods; Lighting; Markov random fields; Rendering (computer graphics); Tagging; Vehicles; Videos;
Conference_Titel :
Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4244-7029-7
DOI :
10.1109/CVPRW.2010.5543911