DocumentCode :
3477801
Title :
Lateral Control Law Design for Helicopter Using Radial Basis Function Neural Network
Author :
Lu, JingChao ; Ling, Qiong ; Zhang, JiaMing
Author_Institution :
Northwestern Polytech. Univ., Xi´´an
fYear :
2007
fDate :
18-21 Aug. 2007
Firstpage :
2807
Lastpage :
2812
Abstract :
As fixed-parameter control can not satisfy control requirements when helicopter is aviating in large scale flight envelop, this paper proposes a new control law design to adjust parameters on-line. Firstly a parameter-mapping approach is developed to design flight control parameters at certain flight conditions according to the desired system performance. Then parameters obtained at given conditions are used to train Radial Basis Function Neural Network (RBFNN). Thus RBFNN can generalize the given flight conditions information and output appropriate control parameters which will meet control requirements for any current flight condition within the given flight envelop. Simulation results indicate this control law design is feasible and effective.
Keywords :
aerospace control; control system synthesis; helicopters; learning (artificial intelligence); neurocontrollers; parameter estimation; position control; radial basis function networks; velocity control; RBFNN; control law design; flight conditions; flight control parameters design; helicopter control; online parameter adjustment; parameter mapping; radial basis function neural network; Aerospace control; Convergence; Fuzzy logic; Fuzzy sets; Fuzzy systems; Helicopters; Neural networks; Power system modeling; Radial basis function networks; Velocity control; Flight control; Parameter mapping; Radial Basis Function Neural Network; T-S model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation and Logistics, 2007 IEEE International Conference on
Conference_Location :
Jinan
Print_ISBN :
978-1-4244-1531-1
Type :
conf
DOI :
10.1109/ICAL.2007.4339059
Filename :
4339059
Link To Document :
بازگشت