Title :
On the approximation of state constrained control problems
Author_Institution :
Inst. of Math., Bucharest, Romania
Abstract :
The author discusses some basic properties and applications of the variational inequality approach related to state constrained control problems. He first examines the simplest possible case of distributed control for linear elliptic partial differential equations, in the presence of constraints on the state. Next, the difficult example of controlling melting/solidification processes under temperature constraints is analyzed. This is expressed as a nonlinear evolution equation entering the class of two-phase Stephan problems. A fundamental ideal related to this approach is to handle the state constraints by means of the state system, not only by appropriate modifications of the cost functional
Keywords :
distributed control; distributed parameter systems; optimal control; partial differential equations; variational techniques; approximation; distributed control; linear elliptic partial differential equations; melting/solidification processes; nonlinear evolution equation; state constrained control; temperature constraints; two-phase Stephan problems; variational inequality; Coercive force; Control systems; Cost function; Distributed control; Mathematics; Nonlinear equations; Optimized production technology; Partial differential equations; Process control; Temperature control;
Conference_Titel :
Decision and Control, 1991., Proceedings of the 30th IEEE Conference on
Conference_Location :
Brighton
Print_ISBN :
0-7803-0450-0
DOI :
10.1109/CDC.1991.261767