DocumentCode :
3480086
Title :
Input-output stability for accelerometer control systems
Author :
Banks, H.T. ; Morris, K.A.
Author_Institution :
Center for Appl. Math. Sci., Univ. of Southern California, Los Angeles, CA, USA
fYear :
1991
fDate :
11-13 Dec 1991
Firstpage :
2676
Abstract :
It is shown that, although accelerometer control systems are not well-posed in the sense of Salamon, a well-defined input-output relation exists. It is established that the output of an accelerometer control system can be described by the convolution of the input and a distribution. This distribution is Laplace transformable, and the Laplace transform of the distribution is the transfer function of the system
Keywords :
Laplace transforms; accelerometers; distributed parameter systems; stability; transfer functions; Hilbert state space; Laplace transform; accelerometer control systems; convolution; distributed parameter systems; input-output stability; transfer function; Accelerometers; Control systems; Convolution; Damping; Hilbert space; Laplace equations; Mathematics; Stability; State-space methods; Strain control; Structural beams; Topology; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1991., Proceedings of the 30th IEEE Conference on
Conference_Location :
Brighton
Print_ISBN :
0-7803-0450-0
Type :
conf
DOI :
10.1109/CDC.1991.261839
Filename :
261839
Link To Document :
بازگشت