DocumentCode :
3480100
Title :
Hierarchical Bayesian segmentation of signals corrupted by multiplicative noise
Author :
Tourneret, Jean-Yves ; Suparman, S. ; Doisy, Michel
Author_Institution :
ENSEEIHT, Toulouse, France
Volume :
6
fYear :
2003
fDate :
6-10 April 2003
Abstract :
The paper addresses the important problem of signal segmentation, when signals are corrupted by multiplicative noise. A hierarchical Bayesian analysis is proposed to estimate the change-point locations and amplitudes. However, closed form expressions of the change-point parameter estimators are difficult to obtain. The proposed methodology draws samples distributed according to the change-point parameter posteriors by a metropolis-within-Gibbs algorithm. The main advantage of the algorithm is that it allows joint estimation of the parameters and hyperparameters of the hierarchical model.
Keywords :
Bayes methods; amplitude estimation; parameter estimation; random noise; signal processing; signal sampling; change-point amplitude estimation; change-point location estimation; change-point parameter estimators; closed form expressions; hierarchical Bayesian analysis; hyperparameters; metropolis-within-Gibbs algorithm; multiplicative noise; signal segmentation; Amplitude estimation; Bayesian methods; Image edge detection; Image processing; Image segmentation; Layout; Parameter estimation; Reflectivity; Signal detection; Speckle;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-7663-3
Type :
conf
DOI :
10.1109/ICASSP.2003.1201644
Filename :
1201644
Link To Document :
بازگشت