DocumentCode :
3484607
Title :
Inward and outward curve evolution using level set method
Author :
Amadieu, Olivier ; Debreuve, Eric ; Barlaud, Michel ; Aubert, Gilles
Author_Institution :
Univ. de Nice-Sophia Antipolis, Biot, France
Volume :
3
fYear :
1999
fDate :
1999
Firstpage :
188
Abstract :
Iterative curve evolution techniques are powerful methods for image segmentation. Classical methods proposed curve evolutions which guarantee close contours at convergence and, combined with the level set method, they easily handled curve topology changes. However, these methods allow only one-way curve evolutions: shrinking or growing of the curve. Thus, the initial curve must encircle all the objects to be segmented or several curves must be used, each one totally inside one object. In this paper, we present a new approach of iterative curve evolution using the level set method based on the variational criterion of an inverse problem. Besides the closing of the final contours and the curve topology change management, our method allows a two-way curve evolution: parts of the curve evolve in the outward direction while others evolve in the inward direction. It offers much more freedom in the initial curve position than with a classical geodesic search method. Our algorithm performs accurate and precise segmentations, with length penalty. Results are shown on damaged images with complex objects (including sharp angles, deep concavities or holes)
Keywords :
image segmentation; iterative methods; variational techniques; close contours; geodesic search method; image segmentation; inward curve evolution; iterative curve evolution; level set method; one-way curve evolutions; outward curve evolution; variational criterion; Active contours; Convergence; Image segmentation; Inverse problems; Iterative algorithms; Iterative methods; Level set; Object detection; Search methods; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on
Conference_Location :
Kobe
Print_ISBN :
0-7803-5467-2
Type :
conf
DOI :
10.1109/ICIP.1999.817097
Filename :
817097
Link To Document :
بازگشت