DocumentCode :
3486100
Title :
Application of Phase-Based Features and Denoising in Postprocessing and Binarization of Historical Document Images
Author :
Nafchi, H.Z. ; Moghaddam, Reza Farrahi ; Cheriet, Mohamed
Author_Institution :
Synchromedia Lab. for Multimedia Commun. in Telepresence, Ecole de Technol. Super., Montreal, QC, Canada
fYear :
2013
fDate :
25-28 Aug. 2013
Firstpage :
220
Lastpage :
224
Abstract :
Preprocessing and post processing steps significantly improve the performance of binarization methods, especially in the case of severely-degraded historical documents. In this paper, an unsupervised post processing method is introduced based on the phase-preserved denoised image and also phase congruency features extracted from the input image. The core of the method consists of two robust mask images that can be used to cross out false positive pixels on the output of the binarization method. First, a mask with a high recall value is obtained from the denoised image using morphological operations. In parallel, a second mask is obtained based on phase congruency features. Then, a median filter is used to remove noise on these two masks, which then are used to correct the output of any binarization method. This approach was tested along with several state-of the-art binarization methods on the DIBCO´09, H-DIBCO´10, DIBCO´11 and H-DIBCO´12 datasets with promising and robust results. Furthermore, the high performance of the proposed masks shows their potential use as unsupervised semi-ground truth generator for learning-based binarization methods.
Keywords :
document image processing; feature extraction; history; image denoising; median filters; unsupervised learning; DIBCO09 dataset; DIBCO11 dataset; H-DIBCO10 dataset; H-DIBCO12 dataset; false positive pixels; historical document image; image binarization; image denoising; learning-based binarization methods; median filter; morphological operations; phase congruency feature extraction; phase-based features; phase-preserved denoised image; recall value; unsupervised post processing method; unsupervised semiground truth generator; Feature extraction; Image edge detection; Noise; Noise reduction; Robustness; Text analysis; Document image processing; Document postperocessing; Historical document binarization; phase conruency features;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Document Analysis and Recognition (ICDAR), 2013 12th International Conference on
Conference_Location :
Washington, DC
ISSN :
1520-5363
Type :
conf
DOI :
10.1109/ICDAR.2013.51
Filename :
6628616
Link To Document :
بازگشت