DocumentCode :
3486234
Title :
MR brain image segmentation by adaptive mixture distribution
Author :
Lee, Juin-Der ; Cheng, Philip E. ; Liou, Michelle
Author_Institution :
Inst. of Stat. Sci., Acad. Sinica, Taipei, Taiwan
Volume :
1
fYear :
2002
fDate :
18-22 Nov. 2002
Firstpage :
216
Abstract :
The Box-Cox transformation is applied to fit a Gaussian mixture distribution to the brain image intensity data. The advantage of using such data-adaptive mixture model is evidenced by yielding better image segmentation results compared to the existing EM procedures using standard Gaussian mixture distribution.
Keywords :
Gaussian distribution; biomedical MRI; image segmentation; medical image processing; Box-Cox transformation; EM procedures; Gaussian mixture distribution; MR brain image segmentation; adaptive mixture distribution; brain image intensity data; data-adaptive mixture model; image segmentation results; standard Gaussian mixture distribution; Brain modeling; Clustering algorithms; Data visualization; Gaussian distribution; Image edge detection; Image segmentation; Iterative algorithms; Maximum likelihood estimation; Parameter estimation; Partitioning algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Information Processing, 2002. ICONIP '02. Proceedings of the 9th International Conference on
Print_ISBN :
981-04-7524-1
Type :
conf
DOI :
10.1109/ICONIP.2002.1202163
Filename :
1202163
Link To Document :
بازگشت