DocumentCode :
3486267
Title :
Temperature-aware test scheduling for multiprocessor systems-on-chip
Author :
Bild, David R. ; Misra, Sanchit ; Chantemy, Thidapat ; Kumar, Prabhat ; Dick, Robert P. ; Huy, X. Sharon ; Shangz, Li ; Choudhary, Alok
Author_Institution :
EECS Dept., Northwestern Univ., Evanston, IL
fYear :
2008
fDate :
10-13 Nov. 2008
Firstpage :
59
Lastpage :
66
Abstract :
Increasing power densities due to process scaling, combined with high switching activity and poor cooling environments during testing, have the potential to result in high integrated circuit (IC) temperatures. This has the potential to damage ICs and cause good ICs to be discarded due to temperature-induced timing faults. We first study the power impact of scan chain testing for the ISCAS89 benchmarks. We find that the scan-chain test power consumption is 1.6times higher for at-speed testing than normal operating power consumption. We conclude that if the testing frequency is less than half of the normal frequency, then the testing power consumption may in fact be lower. However, due to differences in the cooling environments, the peak die temperatures may still be higher. Second, we present an optimal formulation for minimal-duration temperature-constrained test scheduling. Our results improve on the test schedule time of the best existing algorithm by 10.8% on average for a packaged IC thermal environment. We also present an efficient heuristic that generally produces the same results as the optimal algorithm, while requiring little CPU time, even for large problem instances.
Keywords :
integrated circuit packaging; integrated circuit testing; processor scheduling; system-on-chip; ISCAS89 benchmarks; integrated circuit temperatures; minimal-duration temperature-constrained test scheduling; multiprocessor systems-on-chip; packaged IC thermal environment; power densities; process scaling; scan chain testing; temperature-aware test scheduling; temperature-induced timing faults; Circuit testing; Cooling; Energy consumption; Frequency; Integrated circuit testing; Multiprocessing systems; Switching circuits; System testing; Temperature; Timing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on
Conference_Location :
San Jose, CA
ISSN :
1092-3152
Print_ISBN :
978-1-4244-2819-9
Electronic_ISBN :
1092-3152
Type :
conf
DOI :
10.1109/ICCAD.2008.4681552
Filename :
4681552
Link To Document :
بازگشت