• DocumentCode
    3487345
  • Title

    Colour saliency-based parameter optimisation for adaptive colour segmentation

  • Author

    Ilea, Dana E. ; Whelan, Paul F.

  • Author_Institution
    Centre for Image Process. & Anal. (CIPA), Dublin City Univ., Dublin, Ireland
  • fYear
    2009
  • fDate
    7-10 Nov. 2009
  • Firstpage
    973
  • Lastpage
    976
  • Abstract
    In this paper we present a parameter optimisation procedure that is designed to automatically initialise the number of clusters and the initial colour prototypes required by data space partitioning techniques. The proposed optimisation approach involves a colour saliency measure used in conjunction with a SOM classification procedure. For evaluation purposes, we have integrated the proposed initialisation technique in an unsupervised colour segmentation scheme based on K-Means clustering and the evaluation has been carried out in the context of the unsupervised segmentation of natural images.
  • Keywords
    image colour analysis; image segmentation; self-organising feature maps; unsupervised learning; K-means clustering; SOM classification procedure; adaptive colour segmentation; colour saliency; data space partitioning techniques; parameter optimisation; self-organising maps; unsupervised colour segmentation scheme; Clustering algorithms; Computational efficiency; Design optimization; Image analysis; Image color analysis; Image converters; Image processing; Image segmentation; Partitioning algorithms; Prototypes; Colour saliency; SOM; automatic initialisation; clustering; dominant colours; image segmentation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing (ICIP), 2009 16th IEEE International Conference on
  • Conference_Location
    Cairo
  • ISSN
    1522-4880
  • Print_ISBN
    978-1-4244-5653-6
  • Electronic_ISBN
    1522-4880
  • Type

    conf

  • DOI
    10.1109/ICIP.2009.5414039
  • Filename
    5414039