DocumentCode :
3490954
Title :
A characterization method for viscoelastic bulk modulus of molding compounds
Author :
Saraswat, M.K. ; Jansen, K.M.B. ; Patel, M.D. ; Ernst, L.J. ; Bohm, C. ; Kessler, A. ; Preu, H. ; Stecher, M.
Author_Institution :
Delft Univ. of Technol., Delft
fYear :
2008
fDate :
20-23 April 2008
Firstpage :
1
Lastpage :
4
Abstract :
Reliability calculations of the microelectronic packages require cure dependent viscoelastic constitutive relationship for the packaging polymers in order to predict residual stress and strain fields in the final product. The residual stresses can result in the product failure due to warpage, interfacial delamination, thermal fatigue etc. The previous work in the same group (Ernst et al. 2006, 2003) towards complete viscoelastic model development was done using "approximate fully cure dependent" model in order to predict warpage of the QFN package. The relaxation shear modulus was accurately established but due to measurement limitation only estimated values of bulk modulus could be used. In the present work, a high pressure dilatometer (Gnomix PVT Apparatus) was used to establish the time, temperature and pressure dependence of bulk modulus. The bulk modulus shows negligible time dependence which suggests that bulk modulus is not a viscoelastic but merely a temperature dependent linear elastic parameter. A material model for time, temperature and pressure dependency of the Bulk Modulus is developed.
Keywords :
elastic moduli; electronics packaging; internal stresses; reliability; viscoelasticity; characterization method; linear elastic parameter; microelectronic packages; molding compounds; packaging polymers; relaxation shear modulus; reliability calculations; residual stress; strain fields; viscoelastic bulk modulus; viscoelastic constitutive relationship; Capacitive sensors; Delamination; Elasticity; Microelectronics; Packaging; Polymers; Predictive models; Residual stresses; Temperature dependence; Viscosity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008. EuroSimE 2008. International Conference on
Conference_Location :
Freiburg im Breisgau
Print_ISBN :
978-1-4244-2127-5
Electronic_ISBN :
978-1-4244-2128-2
Type :
conf
DOI :
10.1109/ESIME.2008.4525098
Filename :
4525098
Link To Document :
بازگشت