Title :
Dopant-Segregated Ni-Silicide Schottky-Source/Drain CMOS on Strained-Si/SiGe Multiple Quantum-Well Channel on Bulk-Si
Author :
Bera, L.K. ; Lim, Y.F. ; Tan, S.J. ; Loh, W.-Y. ; Murthy, B. Ramana ; Singh, N. ; Rong, Yang ; Tung, C.H. ; Nguyen, H.S. ; Kumar, R. ; Lo, G.Q. ; Balasubramanian, N. ; Kwong, D.L.
Author_Institution :
Inst. of Microelectron., Singapore
Abstract :
The authors report for the first time a high performance Schottky-barrier S/D transistor with strained-Si/SiGe multiple-quantum-well channel (MQW-SBT). Through dopant-segregation at Ni-silicide/Si interface and utilizing the smaller bandgap of channel materials, Schottky-barrier height was modulated resulting in Phib (to electron) ~0.13eV in n-MOS and Phib (hole) ~0.086 eV in p-MOS. This enhanced modulation in MQW helps to achieve high IDs with Ion/Ioff ratio ~ 106 . Significant mobility enhancements of 2.5times (electron) and 3.2times (hole) were achieved for MQW-SBTs over bulk Si DS-SBT
Keywords :
CMOS integrated circuits; Ge-Si alloys; Schottky barriers; Schottky gate field effect transistors; quantum well devices; semiconductor doping; CMOS integrated circuit; Schottky-barrier transistor; Schottky-source/drain; Si-SiGe; dopant segregation; mobility enhancements; multiple quantum-well channel; strained semiconductor; Capacitive sensors; Charge carrier processes; Etching; Fabrication; Germanium silicon alloys; Implants; Photonic band gap; Quantum well devices; Silicidation; Silicon germanium;
Conference_Titel :
Solid-State Device Research Conference, 2006. ESSDERC 2006. Proceeding of the 36th European
Conference_Location :
Montreux
Print_ISBN :
1-4244-0301-4
DOI :
10.1109/ESSDER.2006.307695