DocumentCode :
3495979
Title :
Automatic Video Annotation Using Multimodal Dirichlet Process Mixture Model
Author :
Velivelli, Atulya ; Huang, Thomas S.
Author_Institution :
Univ. of Illinois at Urbana-Champaign, Urbana
fYear :
2008
fDate :
6-8 April 2008
Firstpage :
1366
Lastpage :
1371
Abstract :
In this paper we infer a multimodal Dirichlet process mixture model from video data, the mixture components in this model follow a Gaussian-multinomial distribution. The multimodal Dirichlet process mixture model clusters freely available multimodal data in videos i.e., the combination of visual track and the corresponding keywords extracted from speech transcripts obtained from the audio track of videos, using the parameters of the model we build a predictive model that can output keyword annotations given video shots. In the multimodal Dirichlet process mixture model the keywords follow a multinomial distribution while the features used to represent the video shot follow a Gaussian distribution. We infer the multimodal Dirichlet process mixture model by collecting samples from the corresponding Markov chain using a blocked Gibbs sampling algorithm, and use the inferred parameters to predict video shot annotations that can be used to perform text based retrieval of shots. We compare the performance of our proposed model with other baseline models that use predicted annotations for retrieval.
Keywords :
Gaussian distribution; Markov processes; image sampling; video signal processing; Gaussian-multinomial distribution; Markov chain; automatic video annotation; blocked Gibbs sampling algorithm; multimodal Dirichlet process mixture model; predictive model; speech transcripts; video data; videos audio track; visual track; Cameras; Data engineering; Data mining; Distributed computing; Gaussian distribution; Predictive models; Sampling methods; Speech processing; Statistical learning; Web pages;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Networking, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference on
Conference_Location :
Sanya
Print_ISBN :
978-1-4244-1685-1
Electronic_ISBN :
978-1-4244-1686-8
Type :
conf
DOI :
10.1109/ICNSC.2008.4525431
Filename :
4525431
Link To Document :
بازگشت