DocumentCode :
349740
Title :
An asymmetric basis function network for approximation of dynamical systems
Author :
Umetsu, K. ; Saito, Toshimichi
Author_Institution :
Dept. of Electr. & Electron. Eng., Hosei Univ., Tokyo, Japan
Volume :
2
fYear :
1998
fDate :
1998
Firstpage :
113
Abstract :
This paper proposes a novel algorithm in order to approximate discrete-time dynamical systems. By using a monotone transformation of the data space, it gives asymmetric basis function (ABF) networks. Our algorithm can approximate dynamical systems using less experimental data than conventional algorithms for radial basis function (RBF) networks, and can remove numerical ill-condition problems which are bottlenecks in the conventional algorithms. An application to prediction of bifurcation phenomenon is also discussed
Keywords :
bifurcation; discrete time systems; feedforward neural nets; network parameters; asymmetric basis function network; bifurcation phenomenon; discrete-time dynamical systems; monotone transformation; numerical ill-condition problems; Approximation algorithms; Bifurcation; Chaos; Electronic mail; Heuristic algorithms; Radial basis function networks; Zinc;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electronics, Circuits and Systems, 1998 IEEE International Conference on
Conference_Location :
Lisboa
Print_ISBN :
0-7803-5008-1
Type :
conf
DOI :
10.1109/ICECS.1998.814844
Filename :
814844
Link To Document :
بازگشت