DocumentCode :
3498408
Title :
GreenDroid: An architecture for the Dark Silicon Age
Author :
Goulding-Hotta, Nathan ; Sampson, Jack ; Zheng, Qiaoshi ; Bhatt, Vikram ; Auricchio, Joe ; Swanson, Steven ; Taylor, Michael Bedford
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of California, San Diego, La Jolla, CA, USA
fYear :
2012
fDate :
Jan. 30 2012-Feb. 2 2012
Firstpage :
100
Lastpage :
105
Abstract :
The Dark Silicon Age kicked off with the transition to multicore and will be characterized by a wild chase for seemingly ever-more insane architectural designs. At the heart of this transformation is the Utilization Wall, which states that, with each new process generation, the percentage of transistors that a chip can switch at full frequency is dropping exponentially due to power constraints. This has led to increasingly larger and larger fractions of a chip´s silicon area that must remain passive, or dark. Since Dark Silicon is an exponentially-worsening phenomenon, getting worse at the same rate that Moore´s Law is ostensibly making process technology better, we need to seek out fundamentally new approaches to designing processors for the Dark Silicon Age. Simply tweaking existing designs is not enough. Our research attacks the Dark Silicon problem directly through a set of energy-saving accelerators, called Conservation Cores, or c-cores. C-cores are a post-multicore approach that constructively uses dark silicon to reduce the energy consumption of an application by 10× or more. To examine the utility of c-cores, we are developing GreenDroid, a multicore chip that targets the Android mobile software stack. Our mobile application processor prototype targets a 32-nm process and is comprised of hundreds of automatically generated, specialized, patchable c-cores. These cores target specific Android hotspots, including the kernel. Our preliminary results suggest that we can attain up to 11× improvement in energy efficiency using a modest amount of silicon.
Keywords :
multiprocessing systems; Android hotspots; Android mobile software stack; GreenDroid; Moore law; chip silicon area; dark silicon age; energy consumption; energy efficiency; energy-saving accelerator; insane architectural design; mobile application processor prototype; multicore chip; patchable c-cores; post-multicore approach; utilization wall; Hardware; Mobile communication; Multicore processing; Program processors; Silicon; Transistors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific
Conference_Location :
Sydney, NSW
ISSN :
2153-6961
Print_ISBN :
978-1-4673-0770-3
Type :
conf
DOI :
10.1109/ASPDAC.2012.6164926
Filename :
6164926
Link To Document :
بازگشت