DocumentCode :
3500991
Title :
Robust non-linear smoothing for vehicle state estimation
Author :
Agamennoni, Gabriel ; Worrall, Stewart ; Ward, Jamie ; Nebot, Eduardo
Author_Institution :
Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia
fYear :
2013
fDate :
23-26 June 2013
Firstpage :
156
Lastpage :
162
Abstract :
This paper presents a robust, non-linear smoothing algorithm and develops the theory behind it. This algorithm is extremely robust to outliers and missing data and handles state-dependent noise. Implementing it is straightforward as it consists mainly of two sub-routines: (a) the Rauch-Tung-Striebel recursions, or Kalman smoother; and (b) a backtracking line search strategy. The computational load grows linearly with the number of data because the algorithm preserves the underlying structure of the problem. Global convergence to a local optimum is guaranteed, under mild assumptions.
Keywords :
convergence; road vehicles; search problems; smoothing methods; state estimation; Kalman smoother; Rauch-Tung-Striebel recursions; backtracking line search strategy; global convergence; robust nonlinear smoothing algorithm; state-dependent noise; vehicle state estimation; Approximation methods; Convergence; Global Positioning System; Robot sensing systems; Robustness; Smoothing methods; Vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Vehicles Symposium (IV), 2013 IEEE
Conference_Location :
Gold Coast, QLD
ISSN :
1931-0587
Print_ISBN :
978-1-4673-2754-1
Type :
conf
DOI :
10.1109/IVS.2013.6629464
Filename :
6629464
Link To Document :
بازگشت