DocumentCode :
3501637
Title :
Reed-Muller codes, elementary symmetric functions and asymmetric error correction
Author :
Tallini, Luca G. ; Bose, Bella
Author_Institution :
Dip. di Sci. della Comun., Univ. degli Studi di Teramo, Teramo, Italy
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
1051
Lastpage :
1055
Abstract :
This paper shows that the first order Reed-Muller codes punctured in one component fall into a class of t-asymmetric error correcting (t-AEC) codes with very fast decoding. Hence, these linear Reed-Muller codes give a nice example of t-AEC codes which are very simple to both encode and decode. Decoding of these codes is much simpler than the usual t-SEC BCH code decoding because the syndromes, which are based on elementary symmetric functions of the received word, directly give the number of errors and the error locator polynomial. The result is based on some interesting properties which are proven in general for geometry codes.
Keywords :
Reed-Muller codes; decoding; error correction codes; geometric codes; linear codes; asymmetric error correction; elementary symmetric functions; error locator polynomial; first-order Reed-Muller codes; geometry codes; linear Reed-Muller codes; t-AEC codes; t-SEC BCH code decoding; t-asymmetric error correcting codes; Decoding; Geometry; Linear code; Polynomials; Vectors; Zinc; Reed-Muller codes; Z-channel; asymmetric errors; geometry codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6033691
Filename :
6033691
Link To Document :
بازگشت