Title :
Self-supervised calibration for robotic systems
Author :
Maye, Jerome ; Furgale, Paul ; Siegwart, R.
Author_Institution :
Autonomous Syst. Lab., ETH Zurich, Zurich, Switzerland
Abstract :
We present a generic algorithm for self calibration of robotic systems that utilizes two key innovations. First, it uses information theoretic measures to automatically identify and store novel measurement sequences. This keeps the computation tractable by discarding redundant information and allows the system to build a sparse but complete calibration dataset from data collected at different times. Second, as the full observability of the calibration parameters may not be guaranteed for an arbitrary measurement sequence, the algorithm detects and locks unobservable directions in parameter space using a truncated QR decomposition of the Gauss-Newton system. The result is an algorithm that listens to an incoming sensor stream, builds a minimal set of data for estimating the calibration parameters, and updates parameters as they become observable, leaving the others locked at their initial guess. Through an extensive set of simulated and real-world experiments, we demonstrate that our method outperforms state-of-the-art algorithms in terms of stability, accuracy, and computational efficiency.
Keywords :
Newton method; SLAM (robots); calibration; mobile robots; observability; parameter estimation; sensors; Gauss-Newton system; automatic measurement sequence identification; automatic measurement sequence storage; calibration dataset; calibration parameter estimation; calibration parameter observability; computational efficiency; generic algorithm; information theoretic measures; minimal data set; parameter space; parameter updates; redundant information; robotic systems; self-calibration; self-supervised calibration; sensor stream; stability; truncated QR decomposition; Calibration; Matrix decomposition; Observability; Robot kinematics; Robot sensing systems; Vehicles;
Conference_Titel :
Intelligent Vehicles Symposium (IV), 2013 IEEE
Conference_Location :
Gold Coast, QLD
Print_ISBN :
978-1-4673-2754-1
DOI :
10.1109/IVS.2013.6629513