DocumentCode :
3502292
Title :
Rank minimization over finite fields
Author :
Tan, Vincent Y F ; Balzano, Laura ; Draper, Stark C.
Author_Institution :
Dept. of ECE, Univ. of Wisconsin-MadisonMadison, Madison, WI, USA
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
1195
Lastpage :
1199
Abstract :
This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp. The reliability function associated to the minimum-rank decoder is also derived. Our bounds hold even in the case where the sensing matrices are sparse. Connections to rank-metric codes are discussed.
Keywords :
decoding; matrix algebra; reliability; finite field low-rank matrix estimation; finite fields; information-theoretic limits; minimum-rank decoder; random linear measurements; rank minimization; reliability function; Decoding; Minimization; Noise measurement; Reliability; Sensors; Sparse matrices; Upper bound; Finite fields; Rank minimization; Rank-metric codes; Reliability function; Sparse measurement matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6033722
Filename :
6033722
Link To Document :
بازگشت