• DocumentCode
    3502558
  • Title

    Minimum variance estimation for the sparse signal in noise model

  • Author

    Schmutzhard, Sebastian ; Jung, Alexander ; Hlawatsch, Franz

  • Author_Institution
    Fac. of Math., Univ. of Vienna, Vienna, Austria
  • fYear
    2011
  • fDate
    July 31 2011-Aug. 5 2011
  • Firstpage
    124
  • Lastpage
    128
  • Abstract
    We consider estimation of a sparse parameter vector from measurements corrupted by white Gaussian noise. Using the framework of reproducing kernel Hilbert spaces, we derive closed-form expressions of the Barankin bound, i.e., of the minimum locally achievable variance of any estimator with a prescribed bias function, including the unbiased case. We also derive the locally minimum variance (LMV) estimator that achieves the minimum variance, and a necessary and sufficient condition on the prescribed bias function for the existence of finite-variance estimators and, simultaneously, of the LMV estimator. Finally, we present a numerical comparison of the variance of the hard-thresholding estimator with the corresponding minimum achievable variance.
  • Keywords
    Gaussian noise; Hilbert spaces; signal denoising; white noise; Barankin bound; LMV estimator; closed-form expressions; finite-variance estimators; hard-thresholding estimator; kernel Hilbert space reproduction; locally-minimum variance estimator; noise model; sparse parameter vector; sparse signal; white Gaussian noise; Educational institutions; Estimation; Hafnium; Hilbert space; Kernel; Signal to noise ratio; Barankin bound; RKHS; Sparsity; denoising; minimum variance estimation; reproducing kernel Hilbert space; unbiased estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
  • Conference_Location
    St. Petersburg
  • ISSN
    2157-8095
  • Print_ISBN
    978-1-4577-0596-0
  • Electronic_ISBN
    2157-8095
  • Type

    conf

  • DOI
    10.1109/ISIT.2011.6033735
  • Filename
    6033735