DocumentCode :
3510410
Title :
An automated web surface inspection for hot wire rod using undecimated wavelet transform and support vector machine
Author :
Park, Changhyun ; Won, Sangchul
Author_Institution :
Grad. Inst. of Ferrous Technol., Pohang Univ. of Sci. & Technol., Pohang, South Korea
fYear :
2009
fDate :
3-5 Nov. 2009
Firstpage :
2411
Lastpage :
2415
Abstract :
This paper presents defect detection and classification method for hot wire rod in the steel industry. The detection algorithm is based on undecimated discrete wavelet transform (UDWT). The algorithm utilizes the translation invariant property of UDWT. To discriminate the real defects and pseudo defects, we use support vector machine (SVM). The total 14 feature attributes are extracted from binary and gray image. To select best model for SVM classier, we search the parameter spaces by exponentially growing sampling test. The experimental results show the proposed methods can be applied to real-world application.
Keywords :
discrete wavelet transforms; feature extraction; image colour analysis; pattern classification; rods (structures); steel industry; support vector machines; wires; SVM classifier; automated Web surface inspection; binary image; classification method; defect detection; detection algorithm; feature attributes extraction; gray image; hot wire rod; parameter spaces; pseudo defects; steel industry; support vector machine; translation invariant property; undecimated discrete wavelet transform; undecimated wavelet transform; Detection algorithms; Discrete wavelet transforms; Feature extraction; Inspection; Metals industry; Support vector machine classification; Support vector machines; Surface waves; Wavelet transforms; Wire;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics, 2009. IECON '09. 35th Annual Conference of IEEE
Conference_Location :
Porto
ISSN :
1553-572X
Print_ISBN :
978-1-4244-4648-3
Electronic_ISBN :
1553-572X
Type :
conf
DOI :
10.1109/IECON.2009.5415248
Filename :
5415248
Link To Document :
بازگشت