DocumentCode :
3514881
Title :
Model selection and parameter estimation of nonlinear system based on PSO
Author :
Lin, Weixing ; Zhang, Huidi ; Qian, Jixin
Author_Institution :
Fac. of Inf. Sci. & Technol., Ningbo Univ., China
Volume :
1
fYear :
2004
fDate :
15-19 June 2004
Firstpage :
262
Abstract :
A new method for model selection and parameter estimation for Hammerstein model is presented using particle swarm optimization (PSO). The error rule is proposed to decrease computation and obtain the true optimal structure effectively. The modified identification algorithm is always convergence by adding a backward algorithm. Meanwhile, it can obtain a high precision for the parameter estimation. The experimental results illustrate that the residual variance is an efficient selection criterion, but Akaike´s information criterion (AIC) and minimum description length (MDL) criterions are not fit for the structure identification of the nonlinear system.
Keywords :
convergence; nonlinear systems; optimisation; parameter estimation; Hammerstein model; backward algorithm; convergence; error rule; nonlinear system; optimal structure; parameter estimation; particle swarm optimization; residual variance; structure identification algorithm; Computer errors; Convergence; Information science; Nonlinear systems; Parameter estimation; Particle swarm optimization; Systems engineering and theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on
Print_ISBN :
0-7803-8273-0
Type :
conf
DOI :
10.1109/WCICA.2004.1340570
Filename :
1340570
Link To Document :
بازگشت