DocumentCode
3516663
Title
Sparse summarization of robotic grasping data
Author
Hjelm, Martin ; Ek, Carl Henrik ; Detry, Renaud ; Kjellstrom, Hedvig ; Kragic, Danica
Author_Institution
Perception Lab., KTH R. Inst. of Technol., Stockholm, Sweden
fYear
2013
fDate
6-10 May 2013
Firstpage
1082
Lastpage
1087
Abstract
We propose a new approach for learning a summarized representation of high dimensional continuous data. Our technique consists of a Bayesian non-parametric model capable of encoding high-dimensional data from complex distributions using a sparse summarization. Specifically, the method marries techniques from probabilistic dimensionality reduction and clustering. We apply the model to learn efficient representations of grasping data for two robotic scenarios.
Keywords
Bayes methods; data reduction; data structures; humanoid robots; learning (artificial intelligence); pattern clustering; Bayesian nonparametric model; high dimensional continuous data representation; probabilistic dimensionality clustering; probabilistic dimensionality reduction; sparse robotic grasping data summarization; Data models; Encoding; Grasping; Kernel; Optimization; Robots; Shape;
fLanguage
English
Publisher
ieee
Conference_Titel
Robotics and Automation (ICRA), 2013 IEEE International Conference on
Conference_Location
Karlsruhe
ISSN
1050-4729
Print_ISBN
978-1-4673-5641-1
Type
conf
DOI
10.1109/ICRA.2013.6630707
Filename
6630707
Link To Document