• DocumentCode
    3516663
  • Title

    Sparse summarization of robotic grasping data

  • Author

    Hjelm, Martin ; Ek, Carl Henrik ; Detry, Renaud ; Kjellstrom, Hedvig ; Kragic, Danica

  • Author_Institution
    Perception Lab., KTH R. Inst. of Technol., Stockholm, Sweden
  • fYear
    2013
  • fDate
    6-10 May 2013
  • Firstpage
    1082
  • Lastpage
    1087
  • Abstract
    We propose a new approach for learning a summarized representation of high dimensional continuous data. Our technique consists of a Bayesian non-parametric model capable of encoding high-dimensional data from complex distributions using a sparse summarization. Specifically, the method marries techniques from probabilistic dimensionality reduction and clustering. We apply the model to learn efficient representations of grasping data for two robotic scenarios.
  • Keywords
    Bayes methods; data reduction; data structures; humanoid robots; learning (artificial intelligence); pattern clustering; Bayesian nonparametric model; high dimensional continuous data representation; probabilistic dimensionality clustering; probabilistic dimensionality reduction; sparse robotic grasping data summarization; Data models; Encoding; Grasping; Kernel; Optimization; Robots; Shape;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Robotics and Automation (ICRA), 2013 IEEE International Conference on
  • Conference_Location
    Karlsruhe
  • ISSN
    1050-4729
  • Print_ISBN
    978-1-4673-5641-1
  • Type

    conf

  • DOI
    10.1109/ICRA.2013.6630707
  • Filename
    6630707