• DocumentCode
    3516833
  • Title

    Perturbation Analysis for Studying the Bidding Strategy in Asymmetric First Price Auctions

  • Author

    Ping-ping, Wang ; Shao-rong, SUN

  • Author_Institution
    Coll. of Manage., Shanghai Univ. of Sci. & Technol.
  • fYear
    2006
  • fDate
    5-7 Oct. 2006
  • Firstpage
    443
  • Lastpage
    448
  • Abstract
    Bidders\´ asymmetries are widespread in auction markets. In such cases the mathematical model is given by a system of coupled nonlinear ordinary differential equations that cannot be solved explicitly for the equilibrium strategies, except for very simple models. As a result, analysis of asymmetric auctions is considerably more complex than for symmetric ones, and relatively little is known at present on asymmetric auctions. In situations like this, where it is difficult or even impossible to obtain exact solutions, much insight can be gained by employing perturbation analysis, whereby one calculates an explicit approximation to the solution. In this paper we adopt this approach and use perturbation analysis to calculate the equilibrium bid strategies in first price auctions. As we see, these explicit approximations are quite insightful, making the sacrifice of "exactness" worthwhile
  • Keywords
    commerce; nonlinear differential equations; perturbation techniques; pricing; statistical distributions; asymmetric first price auctions; auction markets; coupled nonlinear ordinary differential equations; equilibrium bid strategies; mathematical model; perturbation analysis; Cost accounting; Couplings; Distribution functions; Educational institutions; Financial management; Information analysis; Information management; Mathematical model; Procurement; Technology management; Asymmetric auctions; First price auction; Perturbation analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Management Science and Engineering, 2006. ICMSE '06. 2006 International Conference on
  • Conference_Location
    Lille
  • Print_ISBN
    7-5603-2355-3
  • Type

    conf

  • DOI
    10.1109/ICMSE.2006.313889
  • Filename
    4104940