DocumentCode :
3517110
Title :
Multi-task classification with infinite local experts
Author :
Wang, Chunping ; An, Qi ; Carin, Lawrence ; Dunson, David B.
Author_Institution :
Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
1569
Lastpage :
1572
Abstract :
We propose a multi-task learning (MTL) framework for non-linear classification, based on an infinite set of local experts in feature space. The usage of local experts enables sharing at the expert-level, encouraging the borrowing of information even if tasks are similar only in subregions of feature space. A kernel stick-breaking process (KSBP) prior is imposed on the underlying distribution of class labels, so that the number of experts is inferred in the posterior and thus model selection issues are avoided. The MTL is implemented by imposing a Dirichlet process (DP) prior on a layer above the task-dependent KSBPs.
Keywords :
learning (artificial intelligence); pattern classification; Dirichlet process; infinite local experts; kernel stick-breaking process; multitask classification; multitask learning; nonlinear classification; Bayesian methods; Kernel; Machine learning; Classification; Dirichlet process; Expert; Kernel stick-breaking process; Multi-task learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4959897
Filename :
4959897
Link To Document :
بازگشت