Title :
Dirichlet process mixture models with multiple modalities
Author :
Paisley, John ; Carin, Lawrence
Author_Institution :
Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC
Abstract :
The Dirichlet process can be used as a nonparametric prior for an infinite-dimensional probability mass function on the parameter space of a mixture model. The set of parameters over which it is defined is generally used for a single, parametric distribution. We extend this idea to parameter spaces that characterize multiple distributions, or modalities. In this framework, observations containing multiple, incompatible pieces of information can be mixed upon, allowing for all information to inform the final clustering result. We provide a general MCMC sampling scheme and demonstrate this framework on a Gaussian-HMM mixture model applied to synthetic and Major League Baseball data.
Keywords :
Gaussian processes; Monte Carlo methods; hidden Markov models; Dirichlet process mixture models; Gaussian-HMM mixture model; MCMC sampling scheme; infinite-dimensional probability mass function; mixture model; multiple modalities; parametric distribution; Bayesian methods; Distribution functions; Gaussian processes; Hidden Markov models; Inference algorithms; Machine learning; Robustness; Signal processing; Signal sampling; Bayesian hierarchical models; Dirichlet process; Gaussian mixture model; hidden Markov model;
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2009.4959908