DocumentCode :
3517794
Title :
A generalized family of parameter estimation techniques
Author :
Kanevsky, Dimitri ; Sainath, Tara N. ; Ramabhadran, Bhuvana
Author_Institution :
IBM T.J. Watson Res. Center, Yorktown, NY
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
1725
Lastpage :
1728
Abstract :
The extended Baum-Welch (EBW) transformations is one of a variety of techniques to estimate parameters of Gaussian mixture models. In this paper, we provide a theoretical framework for general parameter estimation and show the relationship between these different techniques. We introduce a general family of model parameter updates that generalizes a Baum-Welch (BW) recursive process to an arbitrary objective function of Gaussian Mixture Models, and show how other common parameter estimation techniques belong to this family of model update rules. Furthermore, we formulate the construction of an even more general family of update rules that has any specified value as a gradient steepness which belongs to the family of EBW gradient steepness, measuring how much an initial model is moved to an estimated updated model.
Keywords :
Gaussian processes; recursive estimation; Gaussian mixture model; arbitrary objective function; extended Baum-Welch transformation; gradient steepness; parameter estimation technique; recursive process; Artificial intelligence; Computer science; Gradient methods; Laboratories; Maximum likelihood estimation; Maximum likelihood linear regression; Natural language processing; Parameter estimation; Pattern recognition; Tagging; Pattern recognition; gradient methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4959936
Filename :
4959936
Link To Document :
بازگشت