DocumentCode :
3518711
Title :
A volumetric spin-off EGI for registration of volume datasets
Author :
Dong, Chun ; Newman, Timothy S.
Author_Institution :
Dept. of Comput. Sci., Univ. of Alabama in Huntsville, Huntsville, AL, USA
fYear :
2011
fDate :
28-28 Nov. 2011
Firstpage :
470
Lastpage :
474
Abstract :
A spin-off of the Extended Gaussian Image [1] (EGI) registration technique to volumetric datasets is presented. This spin-off technique directly allows recovery of the rotation (and indirectly may allow recovery of the translation) transformations that aligns one volumetric dataset to another. An extension of the basic EGI´s orientation histogram to volumetric datasets is also described. Using this histogram, a volume gradient orientation histogram, enables the registration (i.e., aligning) of two instances of one subject. The spin-off technique can be useful for fully automated registration without extraction of higher level features or markers. Results on multiple types of datasets are also reported.
Keywords :
Gaussian processes; image enhancement; image registration; fully automated registration; spin-off of the extended Gaussian image registration technique; volume gradient orientation histogram; volumetric spin-off EGI; Computed tomography; Engines; Foot; Image sensors; Magnetic resonance imaging; Pediatrics; Sensors; Extended Gaussian Image; Image registration; Orientation histogram; Volumetric data processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ACPR), 2011 First Asian Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4577-0122-1
Type :
conf
DOI :
10.1109/ACPR.2011.6166603
Filename :
6166603
Link To Document :
بازگشت