DocumentCode :
3520277
Title :
Optimal sampling-based planning for linear-quadratic kinodynamic systems
Author :
Goretkin, Gustavo ; Perez, A. ; Platt, Robert ; Konidaris, George
Author_Institution :
Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA
fYear :
2013
fDate :
6-10 May 2013
Firstpage :
2429
Lastpage :
2436
Abstract :
We propose a new method for applying RRT* to kinodynamic motion planning problems by using finite-horizon linear quadratic regulation (LQR) to measure cost and to extend the tree. First, we introduce the method in the context of arbitrary affine dynamical systems with quadratic costs. For these systems, the algorithm is shown to converge to optimal solutions almost surely. Second, we extend the algorithm to non-linear systems with non-quadratic costs, and demonstrate its performance experimentally.
Keywords :
linear quadratic control; nonlinear systems; path planning; random processes; robot dynamics; robot kinematics; sampling methods; trees (mathematics); LQR; RRT; arbitrary affine dynamical systems; finite-horizon linear quadratic regulation; kinodynamic motion planning problems; linear-quadratic kinodynamic systems; nonlinear systems; nonquadratic costs; optimal sampling-based planning; quadratic costs; rapidly-exploring random tree; Aerospace electronics; Cost function; Dynamics; Equations; Heuristic algorithms; Planning; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2013 IEEE International Conference on
Conference_Location :
Karlsruhe
ISSN :
1050-4729
Print_ISBN :
978-1-4673-5641-1
Type :
conf
DOI :
10.1109/ICRA.2013.6630907
Filename :
6630907
Link To Document :
بازگشت