Title :
The effect of tailoring electron/hole blocking layers on the photovoltaic performance of the single junction solar cells
Author :
Hsieh, Ming-Han ; Wu, Yuh-Renn ; Singh, Jasprit
Abstract :
This paper discusses the effect of electron/hole blocking layer on the photovoltaic performance of the single junction solar cells. The study shows that with a pure electron blocking on the p-type doping Si and a pure hole blocking layer on n-type doing, it is possible to enhance the open circuit voltage and short circuit current. Therefore, the Ga2O3 and TiO2 materials are chosen as the electron and hole blocking layer. The result shows that the open circuit voltage increases from 0.65 eV to 0.80 eV, and the short circuit current increases from 35.1 mA/cm2 to 35.9 mA/cm2, where the power efficiency can increase from 21.9 % to 27.6 %. The super lattice quantum well structure as a electron/hole blocking layer has also been examined in this paper.
Keywords :
electron-hole recombination; gallium compounds; silicon; solar cells; superlattices; titanium compounds; Ga2O3; Si; TiO2; electron blocking; electron-hole blocking layer; open circuit voltage; photovoltaic performance; short circuit current; single junction solar cells; superlattice quantum well structure; Photovoltaic systems; Silicon; Spontaneous emission; photovoltaic cells; silicon; superlattice;
Conference_Titel :
Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE
Conference_Location :
Austin, TX
Print_ISBN :
978-1-4673-0064-3
DOI :
10.1109/PVSC.2012.6318110