DocumentCode :
352214
Title :
Improved parameter estimation of linear systems with noisy data
Author :
Zheng, Wei Xing
Author_Institution :
Sch. of Sci., Univ. of Western Sydney, Sydney, NSW, Australia
Volume :
4
fYear :
2000
fDate :
2000
Firstpage :
505
Abstract :
This paper addresses the problem of parameter estimation of linear systems with noisy input-output measurements. A new and simple estimation scheme for the variances of the white input and output measurement noises is presented which is based on expanding the denominator polynomial of the system transfer function only and makes no use of the average least-squares (LS) errors. The attractive feature of the iterative LS based parametric algorithm thus developed is its improved convergence property. The effectiveness of the developed identification algorithm is demonstrated through numerical illustrations
Keywords :
convergence of numerical methods; iterative methods; least squares approximations; linear systems; parameter estimation; white noise; BELS-A algorithm; convergence property; denominator polynomial; identification algorithm; iterative LS based parametric algorithm; least-squares errors; linear systems; noisy data; noisy input-output measurements; parameter estimation; system transfer function; white noise; Convergence; Iterative algorithms; Linear systems; Noise measurement; Parameter estimation; Pollution measurement; Polynomials; Riccati equations; Signal processing algorithms; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on
Conference_Location :
Geneva
Print_ISBN :
0-7803-5482-6
Type :
conf
DOI :
10.1109/ISCAS.2000.858799
Filename :
858799
Link To Document :
بازگشت