DocumentCode :
3524364
Title :
Over 8% efficiency Cu2ZnSnS4 submodules with ultra-thin absorber
Author :
Sugimoto, Hiroki ; Hiroi, Homare ; Sakai, Noriyuki ; Muraoka, Satoshi ; Katou, Takuya
Author_Institution :
Atsugi Res. Center, Solar Frontier K.K., Atsugi, Japan
fYear :
2012
fDate :
3-8 June 2012
Abstract :
An efficiency of 8.6% on Cu2ZnSnS4 (CZTS) submodule is achieved by revising absorber formation and optimizing buffer layer thickness with the improved absorber. The CZTS submodule is fabricated by following process. Mo back electrode and metal precursor are deposited by vacuum-based processes. The CZTS absorber layer is formed through high-temperature annealing with sulfur containing gas. CdS buffer layer and ZnO window layer are then deposited by chemical bath deposition and metal-organic chemical vapor deposition, respectively. In this paper, we focus on the CZTS absorber uniformity and its thickness. Buffer thickness is also optimized. At first, performance of submodules with void-rich absorber and void-free absorber is investigated. Then, the impact of absorber thickness is investigated. We observe that thinner absorbers contribute to higher open circuit voltage whereas void-free absorbers contribute to higher fill factor. Over 8% submodule efficiency is achieved with void-free ultra-thin CZTS absorber layer with only 600 nm in thickness. Electron beam induced current (EBIC) mapping is performed to map out the distribution of current collection. The EBIC result clearly shows that the void-free and ultra-thin absorber has uniform and wide EBIC distribution. In addition, re-optimization of buffer layer thickness for the void-free and ultra-thin absorber further boosts the performance. We find that thinner CdS which lead to less absorption loss at short wavelength region works well with the void-free ultra-thin absorber. Further optimization will contribute to the development of lower cost and higher productivity CZTS fabrication process.
Keywords :
coating techniques; copper compounds; semiconductor thin films; solar cells; tin compounds; zinc compounds; CZTS absorber layer; CZTS fabrication process; CZTS submodule; Cu2ZnSnS4; ERIC distribution; ERIC mapping; absorber formation; back electrode; buffer layer thickness; buffer layer thickness re-optimization; chemical bath deposition; electron beam induced current; metal precursor; metal-organic chemical deposition; submodules; thin-film solar cells; ultrathin absorber; vacuum-based processes; void-free absorber; void-rich absorber; Absorption; Buffer layers; Fabrication; Optimization; Photovoltaic cells; Photovoltaic systems; Absorber; CZTS; Submodule; Thin film;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE
Conference_Location :
Austin, TX
ISSN :
0160-8371
Print_ISBN :
978-1-4673-0064-3
Type :
conf
DOI :
10.1109/PVSC.2012.6318214
Filename :
6318214
Link To Document :
بازگشت